
Autonomous Controller Design for Unmanned

Aerial Vehicles using Multi-objective Genetic

Programming

Choong K. Oh

U.S. Naval Research Laboratory

4555 Overlook Ave. S.W.

Washington, DC 20375

Email: choong.oh@nrl.navy.mil

Gregory J. Barlow

Center for Robotics and Intelligent Machines

Dept. of Electrical and Computer Engineering

North Carolina State University

Raleigh, NC 27695-7911

Email: gjbarlow@ncsu.edu

Abstract— Autonomous navigation controllers were developed
for fixed wing unmanned aerial vehicle (UAV) applications using
multi-objective genetic programming (GP). We designed four
fitness functions derived from flight simulations and used multi-
objective GP to evolve controllers able to locate a radar source,
navigate the UAV to the source efficiently using on-board sensor
measurements, and circle closely around the emitter. Controllers
were evolved for three different kinds of radars: stationary,
continuously emitting radars, stationary, intermittently emitting
radars, and mobile, continuously emitting radars. We selected
realistic flight parameters and sensor inputs to aid in the
transference of evolved controllers to physical UAVs.

I. INTRODUCTION

The field of evolutionary robotics (ER) [1] combines re-

search on behavior-based robot controller design with evo-

lutionary computation. A major focus of ER is the automatic

design of behavioral controllers with no internal environmental

model, in which effector outputs are a direct function of

sensor inputs [2]. ER uses a population-based evolutionary

algorithm to evolve autonomous robot controllers for a target

task. Most of the controllers evolved in ER research to date

have been developed for simple behaviors, such as obstacle

avoidance [3], light seeking [4], object movement [5], simple

navigation [6], and game playing [7], [8]. In many of these

cases, the problems to be solved were designed specifically for

research purposes. While simple problems generally require a

small number of behaviors, more complex real-world problems

might require the coordination of multiple behaviors in order

to achieve the goals of the problem. Very little of the ER work

to date has been intended for use in real-life applications.

Early in ER research, Brooks noted that the evolution of

robot controllers would probably need to occur in simulation

[9]. While some controllers have been evolved in situ on phys-

ical robots, evolution requires many evaluations to produce

good behaviors, which generally takes an excessive amount of

time on real robots. Evolving controllers in simulation is less

constraining, because evaluations are usually much faster and

can be parallelized. Since simulation environments cannot be

perfectly equivalent to the conditions a real robot would face,

transference of controllers evolved in simulation to real robots

has been an important issue.

Genetic programming (GP) has been increasingly successful

in the evolution of robot controllers capable of complex tasks.

While artificial neural networks have traditionally been the

most popular controller structure used in ER [3], [4], [7],

[8], [10], [11], GP has also been shown to produce functional

behaviors for autonomous robot control [5], [6].

One of the main difficulties of ER is the formulation of

fitness functions [12]. For many problems explored to date

in ER, fitness functions that combined multiple objectives

were synthesized using extensive human knowledge of the

domain or trial and error. For proof of concept research, the

problem to be solved has often been adapted in ways that made

the formulation of these fitness metrics easier, such as the

simplification of the environment [7]. While co-evolution and

competitive fitness metrics have been used to generalize fitness

function formulation, these methods usually require changing

the problem to fit the competitive fitness model [8], [13]. For

problems without a single, easily quantifiable objective, an

alternative that has attracted a great deal of research in the last

several years is multi-objective optimization, which allows the

evolutionary algorithm to optimize on multiple fitness metrics

[14]–[16].

A majority of the research in ER has focused on wheeled

mobile robot platforms [3]–[8], [10], [17], especially the

Khepera robot [3]–[5], [17]. Research on walking robots [10]

and other specialized robots [11] has also been pursued. An

application of ER that has received very little attention is

unmanned aerial vehicles (UAVs). The UAV is becoming

increasingly popular for many applications, particularly where

high risk or accessibility are issues.

Many problems have multiple objectives, but conventional

GP uses only a single scalar fitness function. For problems

with multiple goals, the objectives must be combined into a

single function using weighting [5]. An alternative is multi-

objective GP, where evolution optimizes over multiple objec-

tives [16]. Weighting of the different objectives is not neces-

sary for multi-objective optimization because it simultaneously

satisfies multiple functions without requiring scaling factors

between the objectives. Since this technique produces multiple

fitness values for each individual, a non-dominated sort is used

to determine the relative rank of individuals in the population

[14]. Very rarely does multi-objective optimization produce

a single best solution. Instead, a Pareto front of solutions is

produced, where all solutions on that front are non-dominated

[15]. It is up to the designer to choose a solution from this

set.

In this paper, we present our approach to evolving be-

havioral navigation controllers for fixed wing UAVs using

multi-objective GP. The goal is to produce a controller that

can locate an electromagnetic energy source, navigate the

UAV to the source efficiently using sensor measurements, and

circle closely around the emitter, which is a radar in our

simulation. Controllers were evolved for three different kinds

of radars: stationary, continuously emitting radars, stationary,

intermittently emitting radars, and mobile, continuously emit-

ting radars. Multi-objective optimization and GP were used to

satisfy the objectives. While there has been success in evolving

controllers directly on real robots [3], simulation is the only

feasible way to evolve controllers for UAVs. A UAV cannot be

operated continuously for long enough to evolve a sufficiently

competent controller, the use of an unfit controller could result

in damage to the aircraft, and flight tests are very expensive.

For these reasons, the simulation must be capable of evolving

controllers which transfer well to real UAVs. A method that

has proved successful in this process is the addition of noise

to the simulation [17].

After describing the problem and the simulation environ-

ment, we outline the multi-objective GP algorithm, the GP

parameters, and the four fitness measures. We present simu-

lation results for evolved controllers and discuss transference

to a real UAV.

II. UNMANNED AERIAL VEHICLE SIMULATION

The focus of this research was the development of a

navigation controller for a fixed wing UAV. The UAV’s mission

is to autonomously locate, track, and then orbit around a radar

site. There are three main goals for an evolved controller.

First, it should move to the vicinity of the radar as quickly

as possible. The sooner the UAV arrives in the vicinity of the

radar, the sooner it can begin its primary mission, whether that

is jamming the radar, surveillance, or another of the many

applications of this type of controller. Second, once in the

vicinity of the source, the UAV should circle as closely as

possible around the radar. This goal is especially important

for radar jamming, where the distance from the source has

a major effect on the necessary jamming power. Third, the

flight path should be efficient. The roll angle should change

as infrequently as possible, and any change in roll angle should

be small. Making frequent changes to the roll angle of the UAV

could create dangerous flight dynamics and could reduce the

flying time and range of the UAV.

Only the navigation portion of the flight controller is

evolved; the low level flight control is done by an autopi-

lot. The navigation controller receives radar electromagnetic

emissions as input, and based on this sensory data and past

information, the navigation controller changes the desired roll

angle of the UAV control surface. The autopilot then uses

this desired roll angle to change the heading of the UAV.

This autonomous navigation technique results in a general

controller model that can be applied to a wide variety of UAV

platforms; the evolved controllers are not designed for any

specific UAV airframe or autopilot.

The controller is evolved in simulation. The simulation

environment is a square 100 nautical miles (nmi) on each

side. The simulator gives the UAV a random initial position in

the middle half of the southern edge of the environment with

an initial heading of due north and the radar site a random

position within the environment every time a simulation is

run. In our current research, the UAV has a constant altitude

and a constant speed of 80 knots. This assumption is realistic

because the speed and altitude are controlled by the autopilot,

not the evolved navigation controller.

Our simulation can model a wide variety of radar types.

For the research presented in this paper, we modeled three

types of radars: 1) stationary, continuously emitting radars,

2) stationary, intermittently emitting radars with a period

of 10 minutes and duration of 5 minutes, and 3) mobile,

continuously emitting radars. Only the sidelobes of the radar

emissions are modeled. The sidelobes of a radar signal have a

much lower power than the main beam, making them harder to

detect. However, the sidelobes exist in all directions, not just

where the radar is pointed. This model is intended to increase

the robustness of the system, so that the controller doesn’t need

to rely on a signal from the main beam. Additionally, Gaussian

noise is added to the amplitude of the radar signal. The

receiving sensor can perceive only two pieces of information:

the amplitude and the angle of arrival (AoA) of incoming radar

signals. The AoA measures the angle between the heading of

the UAV and the source of incoming electromagnetic energy.

Real AoA sensors do not have perfect accuracy in detecting

radar signals, so the simulation models an inaccurate sensor.

The accuracy of the AoA sensor can be set in the simulation. In

the experiments described in this research, the AoA is accurate

to within ±10◦ at each time step, a realistic value for this type

of sensor. This means that the radar can be anywhere inside

a 20◦ cone emanating from the UAV. Each experimental run

simulates four hours of flight time, where the UAV is allowed

to update its desired roll angle once a second. The interval

between these requests to the autopilot can also be adjusted

in the simulation.

While a human could easily design a controller that could

home in on a radar under perfectly ideal conditions, the

real-world application for these controllers is far from ideal.

While sensors to detect the amplitude and angle of arriving

electromagnetic signals can be very accurate, the more ac-

curate the sensor, the larger and more expensive it tends to

be. One of the great advantages of UAVs is their low cost,

and the feasibility of using UAVs for many applications may

also depend on keeping the cost of sensors low. By using

evolution to design controllers, cheaper sensors with much

lower accuracy can be used without a significant drop in

performance. As the accuracy of the sensors decreases and the

complexity of the radar signals increases - as the radars emit

periodically or move - the problem becomes far more difficult

for human designers. In this research, we are interested in

evolving controllers for these difficult, real-world problems.

III. MULTI-OBJECTIVE GENETIC PROGRAMMING

UAV controllers were designed using multi-objective ge-

netic programming which employs non-dominated sorting,

crowding distance assignment to each solution, and elitism.

The multi-objective genetic programming algorithm used in

this research is very similar to the NSGA-II [14] multi-

objective genetic algorithm. The function and terminal sets

combine a set of very common functions used in GP ex-

periments and some functions specific to this problem. The

function and terminal sets are defined as

F = { Prog2, Prog3, IfThen, IfThenElse, And, Or,

Not, ¡,≤, ¿, ≥, ¡ 0 , ¿ 0, =, +, -, *, ÷, X ¡

0, Y ¡ 0, X ¿ max, Y ¿ max, Amplitude ¿ 0,

AmplitudeSlope ¿ 0, AmplitudeSlope ¡ 0, AoA ¿

0, AoA ¡ 0 }
T = { HardLeft, HardRight, ShallowLeft, Shal-

lowRight, WingsLevel, NoChange, rand, 0, 1 }

The UAV has a GPS on-board, and the position of the UAV

is given by the x and y distances from the origin, located

in the southwest corner of the simulation area. This position

information is available using the functions that include X and

Y, with max equal to 100 nmi, the length of one side of the

simulation area. The UAV is free to move outside of the area

during the simulation, but the radar is always placed within it.

The two available sensor measurements are the amplitude of

the incoming radar signal and the AoA, or angle between the

heading and the source of incoming electromagnetic energy.

Additionally, the slope of the amplitude with respect to time is

available to GP. When turning, there are six available actions.

Turns may be hard or shallow, with hard turns making a 10◦

change in the roll angle and shallow turns a 2◦ change. The

WingsLevel terminal sets the roll angle to 0, and the NoChange

terminal keeps the roll angle the same. Multiple turning actions

may be executed during one time step, since the roll angle is

changed as a side effect of each terminal. The final roll angle

after the navigation controller is finished executing is passed

to the autopilot. The maximum roll angle is 45◦. Each of the

six terminals returns the current roll angle.

Genetic programming was generational, with crossover and

mutation similar to those outlined by Koza in [18]. The

parameters used by GP are shown in Table I. Tournament

selection was used. Initial trees were randomly generated using

ramped half and half initialization. No parsimony pressure

methods were used in this work, as code bloat was not a major

problem.

In GP, the evaluation process of individuals in a population

takes significant computational time, since the simulation must

be run multiple times to obtain fitness values for individuals.

TABLE I

GENETIC PROGRAMMING PARAMETERS.

Population Size 500 Maximum Initial Depth 5

Crossover Rate 0.9 Maximum Depth 21

Mutation Rate 0.05 Generations 600

Tournament Size 2 Trials per evaluation 30

Therefore, using massively parallel computational processors

to parallelize these evaluations is advantageous. Parallel com-

putation was designed by employing the concept of master

and slave nodes. Among multiple computer processors, one

processor was designated as a master and the rest were set as

slaves. The master processor distributes individual evaluations

over the slave processors, and each slave processor reports

its results back to the master after completing computation.

After the master processor collects all individual fitness values

from slave processors, GP moves to the selection process. The

data communication between master and slave processors was

possible using the Message Passing Interface (MPI) standard

[19] under the Linux operating system. All computations were

done on a Beowulf cluster parallel computer with ninety-two

2.4 GHz Pentium 4 processors.

IV. FITNESS FUNCTIONS

Four fitness functions determine the success of individual

UAV navigation controllers. The fitness of a controller was

measured over 30 simulation runs, where the UAV and radar

positions were different for every run. We designed the four

fitness measures to satisfy the three goals of the evolved

controller: moving toward the emitter, circling the emitter

closely, and flying in an efficient way.

A. Normalized distance

The primary goal of the UAV is to fly from its initial

position to the radar site as quickly as possible. We measure

how well controllers accomplish this task by averaging the

squared distance between the UAV and the goal over all time

steps. We normalize this distance using the initial distance

between the radar and the UAV in order to mitigate the effect

of varying distances from the random placement of radar sites.

The normalized distance fitness measure is given as

fitness1 =
1

T

T
∑

i=1

[

distancei

distance0

]2

where T is the total number of time steps, distance0 is the

initial distance, and distancei is the distance at time i. We are

trying to minimize fitness1.

B. Circling distance

Once the UAV has flown in range of the radar, the goal

shifts from moving toward the source to circling around it.

An arbitrary distance much larger than the desired circling

radius is defined as the in-range distance. For this research,

the in-range distance was set to be 10 nmi. The circling

distance fitness metric measures the average distance between

the UAV and the radar over the time the UAV is in range.

While the circling distance is also measured by fitness1, that

metric is dominated by distances far away from the goal and

applies very little evolutionary pressure to circling behavior.

The circling distance fitness measure is given as

fitness2 =
1

N

T
∑

i=1

in range ∗ (distancei)
2

where N is the amount of time the UAV spent within the in-

range boundary of the radar and in range is 1 when the UAV is

in-range and 0 otherwise. We are trying to minimize fitness2.

C. Level time

In addition to the primary goals of moving toward a radar

site and circling it closely, it is also desirable for the UAV to

fly efficiently in order to minimize flight time to get close to

the goal and to prevent potentially dangerous flight dynamics,

like frequent and drastic changes in the roll angle. The first

fitness metric that measures the efficiency of the flight path is

the amount of time the UAV spends with its wings level to

the ground, which is the most stable flight position for a UAV.

This fitness metric only applies when the UAV is outside the

in-range distance, since once the UAV is within the in-range

boundary, we want it to circle around the radar. The level time

is given as

fitness3 =
1

T − N

T
∑

i=1

(1 − in range) ∗ level

where level is 1 when the UAV has been level for two

consecutive time steps and 0 otherwise. We are trying to

maximize fitness3.

D. Turn cost

The second fitness measure intended to produce an efficient

flight path is a measure of turn cost. While UAVs are capable

of very quick, sharp turns, it is preferable to avoid them. The

turn cost fitness measure is intended to penalize controllers that

navigate using a large number of sharp, sudden turns because

this may cause very unstable flight, even stalling. The UAV

can achieve a small turning radius without penalty by changing

the roll angle gradually; this fitness metric only accounts for

cases where the roll angle has changed by more than 10◦ since

the last time step. The turn cost is given as

fitness4 =
1

T

T
∑

i=1

h turn ∗ |roll anglei − roll anglei−1|

where roll angle is the roll angle of the UAV and h turn is 1 if

the roll angle has changed by more than 10◦ since the last time

step and 0 otherwise. We are trying to minimize fitness4.

E. Combining the Fitness Measures

These four fitness functions were designed to evolve par-

ticular behaviors, but the optimization of any one function

could conflict heavily with the performance of the others. Even

though the controller doesn’t generate the most optimized

controllers possible, it can obtain near-optimal solutions.

Combining the functions using multi-objective optimization is

extremely attractive due to the use of non-dominated sorting.

The population is sorted into ranks, where within a rank no

individual is dominant in all four fitness metrics.

Applying the term multi-objective optimization to this evo-

lutionary process is a misnomer, because this research was

concerned with the generation of behaviors, not optimization.

In the same way that a traditional genetic algorithm can

be used for both optimization and generation, so can multi-

objective optimization. Even though the controller doesn’t

generate the most optimized controllers possible, it can obtain

near-optimal solutions.

While all four objectives were important, moving the UAV

to the goal was the highest priority. There are several tech-

niques to encourage one objective over the rest; in this

research, we used a simple form of incremental evolution [20].

For the first 200 generations, only the normalized distance

fitness measure was used. Multi-objective optimization using

all four objectives was used for the last 400 generations of

evolution. Maintaining sufficient diversity in the population is

often an issue when using incremental evolution [21], but did

not appear to be a problem here.

V. RESULTS

Multi-objective GP produced controllers that satisfied the

three goals of this problem. In order to statistically measure the

performance of GP, we did 50 evolutionary runs for each type

of radar. Each run lasted for 600 generations and produced 500

solutions. Since multi-objective optimization produces a Pareto

front of solutions, rather than a single best solution, we needed

a method to gauge the performance of evolution. To do this,

we selected values we considered minimally successful for the

four fitness metrics. We defined a minimally successful UAV

controller as able to move quickly to the target radar site, circle

at an average distance under 2 nmi, fly with the wings level to

the ground for at least 1,000 seconds, and turn sharply less than

0.5% of the total flight time. If a controller had a normalized

distance fitness value (fitness1) of less than 0.15, a circling

distance (fitness2) of less than 4 (the circling distance fitness

metric squares the distance), a level time (fitness3) of greater

than 1,000, and a turn cost (fitness4) of less than 0.05, the

evolution was considered successful. These baseline values

were used only for our analysis, not for the evolutionary

process. To select a single controller from these successful

individuals, increasingly optimal fitness values were chosen

until only a single controller met the criteria. Controllers were

evolved for stationary, continuously emitting radars, station-

ary, intermittently emitting, radars, and mobile, continuously

emitting radars. The results of our experiments are shown in

Table II.

The first experiment evolved controllers on a stationary,

continuously emitting radar. Of the 50 evolutionary runs, 45

runs were acceptable under our baseline values. The number

of acceptable controllers evolved during an individual run

ranged from 1 to 170. Overall, 3,149 acceptable controllers

TABLE II

EXPERIMENTAL RESULTS FOR THREE RADAR TYPES.

Runs Successful controllers

Radar type Total Successful Total Average Maximum

Continuous 50 45 3149 63 170

Intermittent 50 25 1891 37.8 156

Mobile 50 36 2266 45.3 206

0 50 100
0

50

100

1

2

3

4

5

x (nmi)

y
(n

m
i)

Fig. 1. Five UAV flight paths to continuously emitting, stationary radars.

TABLE III

FITNESS VALUES FOR FIVE UAV FLIGHT PATHS TO CONTINUOUSLY EMITTING, STATIONARY RADARS.

Flight Normalized Distance Circling Distance Level Time Turn Cost

1 0.067 1.299 2,346 0.014

2 0.044 1.189 1,384 0.007

3 0.094 1.440 3,531 0.023

4 0.064 1.291 2,245 0.014

5 0.085 1.383 3,122 0.008

Baseline 0.15 4 1,000 0.05

were evolved, for an average of 63 successful controllers per

evolutionary run. Figure 1 shows five sample flight paths to

five different emitter locations for an evolved controller. This

controller has a complexity of 162 nodes, too large a tree to

show here. The fitness values for each simulated flight are

shown in Table III. This evolved controller flies to the target

very efficiently, staying level a majority of the time. Almost

all turns are shallow. Once in range of the target, the roll

angle is gradually increased. Once the roll angle reaches its

maximum value to minimize the circling radius, no change

to the roll angle is made for the remainder of the simulation.

Populations tended to evolve to favor turning left or right.

The second experiment evolved controllers for a stationary,

intermittently emitting radar. The radar was set to emit for 5

minutes and then turned off for 5 minutes, giving a period

of 10 minutes and a 50% duty cycle. The only change from

the first experiment was the radar configuration. However, this

experiment was far more difficult for evolution than the first

experiment, because the radar only emits half of the time

in this experiment. A new set of 50 evolutionary runs were

done, and 25 of the runs produced at least one acceptable

solution. The number of controllers in an evolutionary run

that met the baseline values ranged from 1 to 156, a total

of 1,891 successful controllers were evolved, and the average

number of acceptable controllers evolved during each run

was 37.8. Figure 2 shows five sample flight paths to five

different emitter locations for an evolved controller. The fitness

values for each simulated flight in Figure 2 are shown in

Table IV. The flight paths for the controllers evolved on

intermittently emitting radars were similar to those evolved

on continuously emitting radars. In some cases, controllers

evolved a waiting behavior, where near the beginning of flight,

0 50 100
0

50

100

1

2

3

4

5

x (nmi)

y
(n

m
i)

Fig. 2. Five UAV flight paths to intermittently emitting, stationary radars. Radars were set to emit for 5 minutes and then turned off for 5 minutes, giving a
period of 10 minutes and a 50% duty cycle.

TABLE IV

FITNESS VALUES FOR FIVE UAV FLIGHT PATHS TO INTERMITTENTLY EMITTING, STATIONARY RADARS.

Flight Normalized Distance Circling Distance Level Time Turn Cost

1 0.072 1.363 2,657 0.023

2 0.056 1.332 1,957 0.031

3 0.099 1.505 3,748 0.043

4 0.095 1.422 3,426 0.014

5 0.111 1.505 4,286 0.028

Baseline 0.15 4 1,000 0.05

the UAV would circle during the period when the radar was not

emitting. This happened infrequently for the best controllers.

Also, sometimes the UAV would overshoot its target if the

radar was not emitting when the UAV arrived. Once the UAV

began circling, controllers were able to circle regardless of

whether the radar was emitting or not. Despite the increased

complexity from the first experiment, GP was able to evolve

many successful controllers.

The third experiment evolved controllers for a mobile, con-

tinuously emitting radar. The mobility was modeled as a finite

state machine with the following states: move, setup, deployed,

and tear down. When the radar moves, the new location

is random anywhere in the simulation area. The finite state

machine is repeated for the duration of simulation. The radar

site only emits when it is in the deployed state; while the radar

is in the other states, the UAV receives no sensory information.

The time in each state is probabilistic, and the minimum

amount of time spent in the deployed state is an hour or 25%

of the simulation time. The simulation is identical to the first

two experiments other than the configuration of the radar site.

Of the 50 evolutionary runs, 36 were acceptable under our

baseline values. The number of acceptable controllers evolved

in each run ranged from 1 to 206. A total of 2266 successful

controllers were evolved for an average of 45.3 acceptable

controllers per evolutionary run. While not as difficult for

evolution as the second experiment, the mobile radar was

more challenging than the stationary radar. Figure 3 shows

two sample flight paths to two different mobile radars for an

evolved controller. The fitness values for each simulated flight

are shown in Table V.

To test the effectiveness of each of the four fitness measures,

we ran evolutions with various subsets of the fitness metrics.

These tests were done using the stationary, continuously

emitting radar, the simplest of the three radar types presented

above. The first fitness measure, the normalized distance, was

included in every subset. When only fitness1 was used to

measure controller fitness, flight paths were very direct. The

UAV flew to the target in what appeared to be a straight line.

To achieve this direct route to the target, the controller would

use sharp and alternating turns. The UAV would almost never

fly level to the ground, and all turns were over 10◦. Circling

was also not consistent; the controllers frequently changed

direction while within the in-range boundary of the radar,

rather than orbiting in a circle around the target. For this

simplest of fitness measures, evolution tended to select very

simple bang-bang control, changing the roll angle at every

time step using sharp right and left turns, with the single goal

of minimizing the AoA. In a comparison, evolved controllers

0 50 100
0

50

100

3
2

1

2

1

x (nmi)

y
(n

m
i)

Fig. 3. Two UAV flight paths for continuously emitting, mobile radars. Numbers indicate deployed radar positions.

TABLE V

FITNESS VALUES FOR TWO UAV FLIGHT PATHS TO CONTINUOUSLY EMITTING, MOBILE RADARS.

Flight Normalized Distance Circling Distance Level Time Turn Cost

1 0.091 4.279 2,929 0

2 0.077 3.079 2,997 0

Baseline 0.15 4 1,000 0.05

exhibited slightly better performance than a human-designed,

rule-based controller. Further comparisons were not made,

because the human-designed controller performance degraded

rapidly as additional fitness measures and radar types were

considered.

Using only two fitness measures was not sufficient to

achieve the desired behaviors. If fitness1 and fitness2 were

used, the circling behavior improved, but the efficiency of the

flight path was unchanged. If fitness1 and fitness4 were

used, turns were shallower, but the UAV still failed to fly

with its wings level to the ground for long periods. Circling

around the target also became more erratic and the size of

the orbits increased. If fitness1 and fitness3 were used, the

UAV would fly level a large amount of the time, but circling

was very poor, with larger radius orbits or erratic behavior

close to the target. Sharp turns were also very common.

If three of the fitness measures were used, evolved behavior

was improved, but not enough to satisfy the mission goals.

If all fitness measures were used except fitness2, the UAV

would fly efficiently to the target, staying level and using

only shallow turns. Once in range of the radar, circling was

generally poor. Evolved controllers either displayed large,

circular orbits or very erratic behavior that was unable to

keep the UAV close to the radar. If fitness1, fitness2, and

fitness4 were used, the UAV would circle well once it flew

in range of the radar. While flying toward the radar, the UAV

failed to fly level, though turns tended to be shallow. The

best combination of three fitness measures was when only

fitness4 was removed. In this case, circling was good and

the UAV tended to fly straight to the target. The level time

fitness measure also tended to keep the turns shallow and to

eliminate alternating between right and left turns. However,

turn cost was still high, as many turns were sharp.

When we used all four of the fitness functions, the evolved

controllers were sufficiently robust. A variety of strategies

were evolved to accomplish the mission goals for each of

the three experiments, and many controllers were sufficiently

fit to be considered successful. The evolved controllers were

able to overcome a noisy environment and inaccurate sensor

data in tracking and orbiting a radar site. In short, the use

of four objectives with GP was successful. The four fitness

measures selected all had an impact on the behavior of the

evolved controllers, and all four were necessary to achieve the

desired flight characteristics.

Transference of these controllers to a real UAV is an impor-

tant issue. Flying a physical UAV with an evolved controller is

planned as a demonstration of the research, so transference was

taken into consideration from the beginning. Several aspects

of the controller evolution were designed specifically to aid

in this process. First, the navigation control was abstracted

from the flight of the UAV. Rather than attempting to evolve

direct control, only the navigation was evolved. This allows

the same controller to be used for different airframes. Second,

the simulation parameters were designed to be tuned for

equivalence to real aircraft. For example, the simulated UAV

is allowed to update the desired roll angle once per second

reflecting the update rate of the real autopilot of a UAV being

considered for flight demonstrations of the evolved controller.

For autopilots with slower response times, this parameter could

be increased. Third, noise was added to the simulation, both in

the radar emissions and in sensor accuracy. A noisy simulation

environment encourages the evolution of robust controllers that

are more applicable to real UAVs.

VI. CONCLUSIONS

Using genetic programming with multi-objective optimiza-

tion, we were able to evolve navigation controllers for UAVs

capable of flying to a target radar, circling the radar site, and

maintaining an efficient flight path, all while using inaccurate

sensors in a noisy environment. Controllers were evolved for

three different radar types. First, navigation controllers were

evolved for stationary, continuously emitting radars, and then

two other experiments added difficulties to this simplest radar

case. Intermittently emitting and mobile radars were used in

the second and third experiments. The four fitness functions

used for this research were sufficient to produce the desired

behaviors, and all four measures were necessary for all three

cases. We used methods to aid in the transference of the

evolved controllers to real UAVs. In the next stage of this

research, we will test the controllers evolved in this research

on physical UAVs.

In the near term, future research will focus on evolving UAV

navigation controllers capable of responding to targets even

more elusive than the radar types described here, including

intermittently emitting mobile targets and multiple targets.

Long term goals are the development and demonstration

of general agent architectures that will support autonomous,

adaptive, and cooperative unmanned vehicle activities.

REFERENCES

[1] S. Nolfi and D. Floreano, Evolutionary Robotics. MIT Press, 2000.

[2] D. Keymeulen, M. Iwata, K. Konaka, R. Suzuki, Y. Kuniyoshi, and
T. Higuchi, “Off-life model-free and on-line model-based evolution for
tracking navigation using evolvable hardware,” in Proceedings of the

First European Workshop on Evolutionary Robotics, (Paris), April 1998.

[3] S. Nolfi, D. Floreano, O. Miglino, and F. Mondada, “How to evolve
autonomous robots: Different approaches in evolutionary robotics,” in
Proceedings of the IV International Workshop on Artificial Life (R. A.
Brooks and P. Maes, eds.), (Cambridge, MA), MIT Press, July 1994.

[4] H. H. Lund and J. Hallam, “Evolving sufficient robot controllers,”
in Proceedings of the IEEE International Conference on Evolutionary

Computation, pp. 495–499, 1997.

[5] W.-P. Lee, J. Hallam, and H. H. Lund, “Applying genetic programming
to evolve behavior primitives and arbitrators for mobile robots,” in
Proceedings of the IEEE International Conference on Evolutionary

Computation, pp. 495–499, 1997.

[6] M. Ebner, “Evolution of a control architecture for a mobile robot,”
in Proceedings of the Second International Conference on Evolvable

Systems, pp. 303–310, 1998.

[7] A. L. Nelson, Competitive Relative Performance and Fitness Selection

for Evolutionary Robotics. PhD thesis, North Carolina State University,
2003.

[8] A. L. Nelson, E. Grant, G. Barlow, and M. White, “Evolution of complex
autonomous robot behaviors using competitive fitness,” in Proceedings

of the IEEE International Conference on Integration of Knowledge

Intensive Multi-Agent Systems, (Boston, MA), September 2003.

[9] R. A. Brooks, “Artificial life and real robots,” in Toward a Practice of

Autonomous Systems: Proceedings of the First European Conference on

Artificial Life, (Cambridge, MA), pp. 3–10, MIT Press, 1992.
[10] D. Filliat, J. Kodjabachian, and J.-A. Meyer, “Incremental evolution of

neural controllers for navigation in a 6-legged robot,” in Proceedings

of the Fourth International Symposium on Artificial Life and Robots

(Sugisaka and Tanaka, eds.), Oita University Press, 1999.
[11] I. Harvey, P. Husbands, and D. Cliff, “Seeing the light: Artificial evolu-

tion, real vision,” in Proceedings of the Third International Conference

on Simulation of Adaptive Behavior, pp. 704–720, MIT Press, 1994.
[12] T. Back, U. Hammel, and H.-P. Schwefel, “Evolutionary computation:

Comments on the history and current state,” IEEE Transactions on

Evolutionary Computation, vol. 1, April 1997.
[13] L. Panait and S. Luke, “Methods for evolving robust programs,” in

GECCO (E. C.-P. et al., ed.), (Chicago), pp. 1715–1728, July 2003.
[14] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-

dominated sorting genetic algorithm for multi-objective optimization:
Nsga-II,” in Proceedings of the Parallel Problem Solving from Nature

VI Conference, (Paris, France), pp. 849–858, 2000.
[15] C. A. C. Coello, “An updated survey of evolutionary multiobjective op-

timization techniques: State of the art and future trends,” in Proceedings

of the Congress on Evolutionary Computation, pp. 3–13, 1999.
[16] K. Rodriguez-Vazquez, C. M. Fonseca, and P. J. Fleming, “Multiob-

jective genetic programming: A nonlinear system identification appli-
cation,” in Late Breaking Papers at the 1997 Genetic Programming

Conference, pp. 207–212, 1997.
[17] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality gap: The

use of simulation in evolutionary robotics,” in Proceedings of the 3rd

European Conference on Artificial Life, pp. 704–720, 1995.
[18] J. Koza, Genetic Programming. MIT Press, 1992.
[19] P. Pacheco, Parallel Programming with MPI. Morgan Kaufmann

Publishers, Inc., 1996.
[20] J. F. Winkeler and B. S. Manjunath, “Incremental evolution in genetic

programming,” in Genetic Programming 1998: Proceedings of the Third

Annual Conference, pp. 403–411, 1998.
[21] R. I. Eriksson, “An initial analysis of the ability of learning to maintain

diversity during incremental evolution,” in Data Mining with Evolution-

ary Algorithms (A. A. Freitas, ed.), pp. 120–124, 2000.

